
Springhill Catholic Primary School

Computing Curriculum 2023-24

The national curriculum for computing in England was introduced by the Department of Education in 2014. The curriculum aims to equip young people with the knowledge, skills and understanding they need to thrive in the digital world of today and the future. The curriculum can be broken down into 3 strands: computer science, information technology and digital literacy, with the aims of the curriculum reflecting this distinction.

The national curriculum for computing aims to ensure all pupils:

- can understand and apply the fundamental principles and concepts of computer science, including abstraction, logic, algorithms and data representation (Computer science)
- can analyse problems in computational terms, and have repeated practical experience of writing computer programs in order to solve such problems (Computer science)
- can evaluate and apply information technology, including new or unfamiliar technologies, analytically to solve problems (Information technology)
- are responsible, competent, confident and creati ve users of information and communication technology. (Digital literacy)

Progression Map

KS1 Computing Curriculum Overview

	Computing systems and networks ¹	Creating media	Programming A	Data and information	Creating media	Programming B
Year 1	Technology around us Recognising technology in school and using it responsibly.	Digital painting Choosing appropriate tools in a program to create art, and making comparisons with working non-digitally.	Moving a robot Writing short algorithms and programs for floor robots, and predicting program outcomes.	Grouping data Exploring object labels, then using them to sort and group objects by properties.	Digital writing Using a computer to create and format text, before comparing to writing non- digitally.	Programming animations Designing and programming the movement of a character on screen to tell stories.
Year 2	Information technology around us Identifying IT and how its responsible use improves our world in school and beyond.	Digital photography Capturing and changing digital photographs for different purposes.	Robot algorithms Creating and debugging programs, and using logical reasoning to make predictions.	Pictograms Collecting data in tally charts and using attributes to organise and present data on a computer.	Digital music Using a computer as a tool to explore rhythms and melodies, before creating a musical composition.	Programming quizzes Designing algorithms and programs that use events to trigger sequences of code to make an interactive quiz.

KS2 Computing Curriculum Overview

Lower Key Stage 2

	Computing systems and networks ¹	Creating media	Programming A	Data and information	Creating media	Programming B
Year 3	Connecting computers Identifying that digital devices have inputs, processes, and outputs, and how devices can be connected to make networks.	Stop-frame animation Capturing and editing digital still images to produce a stop- frame animation that tells a story.	Sequencing sounds Creating sequences in a block-based programming language to make music.	Branching databases Building and using branching databases to group objects using yes/no questions.	Desktop publishing Creating documents by modifying text, images, and page layouts for a specified purpose.	Events and actions in programs Writing algorithms and programs that use a range of events to trigger sequences of actions.
Year 4	The internet Recognising the internet as a network of networks including the WWW, and why we should evaluate online content.	Audio production Capturing and editing audio to produce a podcast, ensuring that copyright is considered.	Repetition in shapes Using a text-based programming language to explore count-controlled loops when drawing shapes.	Data logging Recognising how and why data is collected over time, before using data loggers to carry out an investigation.	Photo editing Manipulating digital images, and reflecting on the impact of changes and whether the required purpose is fulfilled.	Repetition in games Using a block-based programming language to explore count-controlled and infinite loops when creating a game.

	Computing systems and networks ¹	Creating media	Programming A	Data and information	Creating media	Programming B
Year 5	Systems and searching Recognising IT systems in the world and how some can enable searching on the internet.	Video production Planning, capturing, and editing video to produce a short film.	Selection in physical computing Exploring conditions and selection using a programmable microcontroller.	Flat-file databases Using a database to order data and create charts to answer questions.	Introduction to vector graphics Creating images in a drawing program by using layers and groups of objects.	Selection in quizzes Exploring selection in programming to design and code an interactive quiz.
Year 6	Communication and collaboration Exploring how data is transferred by working collaboratively online.	Webpage creation Designing and creating webpages, giving consideration to copyright, aesthetics, and navigation.	Variables in games Exploring variables when designing and coding a game.	Introduction to spreadsheets Answering questions by using spreadsheets to organise and calculate data.	3D modelling Planning, developing, and evaluating 3D computer models of physical objects.	Sensing movement Designing and coding a project that captures inputs from a physical device.

National curriculum in England: computing programmes of study

National curriculum in England: Computing programmes of study Purpose of study

A high-quality computing education equips pupils to use computational thinking and creativity to understand and change the world. Computing has deep links with mathematics, science and design and technology, and provides insights into both natural and artificial systems. The core of computing is computer science, in which pupils are taught the principles of information and computation, how digital systems work and how to put this knowledge to use through programming. Building on this knowledge and understanding, pupils are equipped to use information technology to create programs, systems and a range of content. Computing also ensures that pupils become digitally literate – able to use, and express themselves and develop their ideas through, information and communication technology – at a level suitable for the future workplace and as active participants in a digital world.

Aims

The national curriculum for computing aims to ensure that all pupils:

- can understand and apply the fundamental principles and concepts of computer science, including abstraction, logic, algorithms and data representation
- can analyse problems in computational terms, and have repeated practical experience of writing computer programs in order to solve such problems
- can evaluate and apply information technology, including new or unfamiliar technologies, analytically to solve problems
- are responsible, competent, confident and creative users of information and communication technology

Attainment targets

By the end of each key stage, pupils are expected to know, apply and understand the matters, skills and processes specified in the relevant programme of study.

Subject content

Key stage 1

Pupils should be taught to:

- understand what algorithms are, how they are implemented as programs on digital devices, and that programs execute by following precise and unambiguous instructions
- create and debug simple programs
- use logical reasoning to predict the behaviour of simple programs
- use technology purposefully to create, organise, store, manipulate and retrieve digital content
- recognise common uses of information technology beyond school
- use technology safely and respectfully, keeping personal information private; identify where to go for help and support when they have concerns about content or contact on the internet or other online technologies

Key stage 2

Pupils should be taught to:

- design, write and debug programs that accomplish specific goals, including controlling or simulating physical systems; solve problems by decomposing them into smaller parts
- use sequence, selection, and repetition in programs; work with variables and various forms of input and output
- use logical reasoning to explain how some simple algorithms work and to detect and correct errors in algorithms and programs
- understand computer networks, including the internet; how they can provide multiple services, such as the World Wide Web, and the opportunities they offer for communication and collaboration
- use search technologies effectively, appreciate how results are selected and ranked, and be discerning in evaluating digital content
- select, use and combine a variety of software (including internet services) on a range of digital devices to design and create a range of programs, systems and content that accomplish given goals, including collecting, analysing, evaluating and presenting data and information
- use technology safely, respectfully and responsibly; recognise acceptable/unacceptable behaviour; identify a range of ways to report concerns about content and contact